Syntheses and crystal structures of two novel alkaline uranyl chromates $A_{2}\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}(A=\mathrm{Rb}, \mathrm{Cs})$ with bidentate coordination mode of uranyl ions by chromate anions

Oleg I．Siidra＊，Evgeny V．Nazarchuk，Sergey V．Krivovichev
Department of Crystallography，St．Petersburg State University，University Emb．7／9， 199034 St．Petersburg，Russia

ARTICLE INFO

Article history：

Received 3 December 2011
Received in revised form
18 January 2012
Accepted 19 January 2012
Available online 28 January 2012

Keywords：

Uranyl chromates
Bidentate coordination
Structure determination
Single crystal X－ray diffraction

Abstract

Single crystals of $\mathrm{Cs}_{2}\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}$ and $\mathrm{Rb}_{2}\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}$ were prepared by solid state reactions．The structures are based upon the $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}\right]^{2-}$ chains．Within the chains，UrO${ }_{5}$ pentagonal bipyramids （ $U r=$ uranyl）form $U r_{2} \mathrm{O}_{8}$ dimers，which are linked via CrO_{4} tetrahedra into one－dimensional chains．The CrO_{4} tetrahedra coordinate uranyl ions in both mono－and bidentate fashion，which is unusual for uranyl chromates．The bidentate coordination has a strong influence upon geometrical parameters of both U and Cr coordination polyhedra．The conformation of the chains in $\mathbf{1}$ and $\mathbf{2}$ is different due to the different size of the Cs^{+}and Rb^{+}cations．

© 2012 Elsevier Inc．All rights reserved．

1．Introduction

A large amount of structural and chemical data has been accummulated recently on uranium minerals and compounds due to their high importance for nuclear waste management and understanding secondary processes of alteration of spent nuclear fuel（SNF）［1－3］．Uranyl chromates are of special interest，since potassium chromate solution is used as both coolant and corro－ sion inhibitor for some SNF rod arrays made from $\mathrm{Mg}-\mathrm{Be}$ alloys ［4，5］．In addition，uranyl chromates are less studied than other uranyl oxosalts，due to the tendency of Cr^{6+} to reduction in high－ temperature hydrothermal environment［6］．Most of known uranyl chromates are hydrous［7－15］，with only few anhydrous compounds reported to date［16－19］．However，general trends in the structural chemistry of known uranyl chromates are the same as for other uranyl oxysalts containing tetrahedral anions formed by hexavalent elements（Mo，S，Se）［20］．In their structures，uranyl ions form UO_{7} pentagonal bipyramids that share common ver－ tices with CrO_{4} tetrahedral oxoanions in a monodentate fashion to form extended polymerized structures．It should be noted that uranyl sulphates are a bit out of tune with this principle．In contrast to uranyl selenates and molybdates，where only mono－ dentate coordination mode is observed，there are many uranyl sulfates with bidentate coordination of uranyl cations by sulfate

[^0]anions［21－28］．This type of coordination has also been reported for uranyl sulfate solutions［29－31］．The first structure of uranyl chromate with a bidentate coordination mode had recently been reported by our group［32］．Here we report on the syntheses and structures of the new compounds $\mathrm{Cs}_{2}\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}$（1）and $\mathrm{Rb}_{2}\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}(\mathbf{2})$ ，low－temperature phases in the $\mathrm{ANO}_{3}(\mathrm{~A}=\mathrm{Cs}$ ， $\mathrm{Rb})-\mathrm{CrO}_{3}-\left(\mathrm{UO}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}$ system that have been obtained by the solid－state reaction method in the frame of our ongoing research of the crystal chemistry in this system．

2．Experimental

2．1．Synthesis

Single crystals of $\mathbf{1}$ were grown by mixing CsNO_{3}（Vekton， 99．5\％）， CrO_{3}（Vekton， 98% ）and $\left(\mathrm{UO}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$（Vekton，99．7\％） in the ratio of $2: 3: 1$ ．The produced mixture was loaded into a platinum crucible and kept at $270^{\circ} \mathrm{C}$ for 10 h in air，followed by cooling to $100^{\circ} \mathrm{C}$ with a cooling rate of $3^{\circ} \mathrm{C} / \mathrm{h}$ and then cooling down to room temperature with a rate of $7{ }^{\circ} \mathrm{C} / \mathrm{h}$ ．The product consisted of yellow－green isometric crystals of $\mathbf{1}$ in the mass of amorphous $\mathrm{Cr}_{2} \mathrm{O}_{3}$ ．Orange－green transparent crystals of $\mathbf{2}$ were produced by the same procedure，when RbNO_{3} was used instead of CsNO_{3} ．The electron－microprobe analyses（LINK AN－10000 EDS system）were performed．The averaged of seven points（for each compound）gave the empirical formulas calculated on the basis of

10 total oxygen atoms: $\mathrm{Cs}_{2.01}\left(\mathrm{U}_{0.98} \mathrm{O}_{2}\right)\left(\mathrm{Cr}_{0.96} \mathrm{O}_{4}\right)_{2}$ and $\mathrm{Rb}_{1.98}\left(\mathrm{U}_{0.97} \mathrm{O}_{2}\right)$ $\left(\mathrm{Cr}_{0.98} \mathrm{O}_{4}\right)_{2}$.

2.2. Single crystal X-ray study

Yellow-green crystals of $\mathbf{1}$ and $\mathbf{2}$ were mounted on a thin glass fibers for X-ray diffraction analysis. More than a hemisphere of X-ray diffraction data with frame widths of 0.3° in ω, and with 30 s spent counting for each frame were collected at room temperature using a Bruker three-circle Smart APEX II X-ray diffractometer operated with Mo_{α} radiation at 50 kV and 40 mA . The data were integrated and corrected for absorption using an empirical ellipsoidal model using the Bruker programs APEX and XPREP. The observed systematic absences were consistent with space group $P-1$ in both compounds. The structures were solved by direct methods and refined to $R_{1}=0.023$ ($\mathbf{1}$) and $R_{1}=0.030$ on the basis of F^{2} for all unique data. The SHELX program package was used for all structural calculations. Technical details of the data acquisition as well as some refinement results for the title compounds are summarized in Table 1. The atomic coordinates and displacement parameters are given in Tables 2 and 3, and selected bond lengths in Table 4. Further

Table 1
Crystallographic data and refinement parameters for $\mathbf{1}$ and $\mathbf{2}$.

	$\mathbf{1}$	$\mathbf{2}$
Crystal size $\left(\mathrm{mm}^{3}\right)$	$0.11 \times 0.09 \times 0.08$	$0.14 \times 0.10 \times 0.09$
Space group		$P-1$
$a(\AA)$	$7.829(6)$	
$b(\AA)$	$8.588(6)$	$8.052(5)$
$c(\AA \AA)$	$9.796(7)$	$10.362(6)$
$\alpha\left({ }^{\circ}\right)$	$74.73(1)$	$13.707(8)$
$\beta\left({ }^{\circ}\right)$	$71.58(1)$	$102.93(1)$
$\gamma\left({ }^{\circ}\right)$	$74.18(1)$	$106.89(1)$
$V\left(\AA^{3}\right)$	$589.8(7)$	$94.54(1)$
$\mu\left(\mathrm{mm}^{-1}\right)$	21.617	$1053.8(11)$
$\mathrm{D}_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	4.324	
Radiation wavelength (\AA)		26.566
θ-range $\left({ }^{\circ}\right)$	$2.23-27.99$	4.242
Total ref.	6773	
Unique ref.	2832	$1.61-28.00$
Unique \mid Fo $\mid \geq 4 \sigma_{F}$	2526	12,213
$R_{\text {int }}$	0.034	5,095
R_{1}	0.023	4,109
$R_{1}($ all data $)$	0.027	0.064
GoF	0.962	0.030
$\rho_{\text {max,min }}\left(\mathrm{e} \cdot \AA^{-3}\right)$	$+1.257 /-1.031$	0.040

details of the crystal structure investigation are available from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany, on quoting the depository numbers CSD424125 (for $\mathrm{Rb}_{2}\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}$) or CSD-424126 (for $\mathrm{Cs}_{2}\left(\mathrm{UO}_{2}\right)(-$ $\left.\mathrm{CrO}_{4}\right)_{2}$), the names of the authors and the citation of the paper.

3. Results

The structure of $\mathbf{1}$ contains one symmetrically independent U^{6+} cation, two Cr^{6+} and two Cs^{+}cations. U atom is strongly bonded to two O atoms and further coordinated by five atoms of O arranged at the equatorial vertices of UrO_{5} ($\mathrm{Ur}=$ uranyl) pentagonal bipyramids. Average $U r-\mathrm{O}_{e q}\left(\mathrm{O}_{e q}=\right.$ equatorial O atom) bond lengths are in the range from 2.246 to $2.449 \AA$ A. Each of the two Cr atoms is tetrahedrally coordinated by four O atoms. CrO_{4} tetrahedra are distorted with the $\mathrm{Cr}-\mathrm{O}$ bond lengths varying from 1.593 to $1.726 \AA$. Cs atoms are coordinated by eight O atoms each. In comparison to $\mathbf{1}$, the structure of $\mathbf{2}^{10}$ has twice more cations sites, which essentially follow coordination features observed in the structure of $\mathbf{1}$. The $U r-\mathrm{O}_{e q}$ bonds are in the range of 2.253$2.439 \AA$ and $\mathrm{Cr}-\mathrm{O}$ bonds vary from 1.574 to $1.709 \AA$. The structures of $\mathbf{1}$ and $\mathbf{2}$ are based upon one-dimensional uranyl chromate chains with the composition $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}\right]^{2-}$ (Figs. 1, 2). Within the chain, two adjacent $U r \mathrm{O}_{5}$ pentagonal bipyramids share two equatorial O atoms to form $\mathrm{Ur}_{2} \mathrm{O}_{8}$ dimers. Each bipyramid is also coordinated by a CrO_{4} tetrahedron in a bidentate fashion. The resulting $\left[\mathrm{Ur}_{2} \mathrm{O}_{4}\left(\mathrm{CrO}_{4}\right)_{2}\right]$ complexes are further linked through additional CrO_{4} tetrahedra (that coordinate uranyl cations in a monodentate fashion) into the $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}\right]^{2-}$ chains extended along [00 01] in $\mathbf{1}$ and along [1-11] in 2. The alkali metal cations are located in between the chains providing three-dimensional integrity of the structures.

Both bidentate and monodentate coordination of uranyl cations by CrO_{4} tetrahedral groups results in significant distortions of both U and Cr coordination polyhedra. In bidentate complexes, the $\mathrm{U}-\mathrm{Cr}$ distances are in the range of $3.158-$ $3.196 \AA$, which is in agreement with the results previously reported [33]. In order to describe structure distortions in 1 and 2, the O atoms in the CrO_{4} tetrahedra can be classified into three groups: (i) atoms involved in bidentate coordination (bidentate bridging, O_{bb}); (ii) atoms involved in monodentate coordination (monodentate bridging, O_{mb}); (iii) terminal atoms not bonded to U (terminal, O_{t}). Geometrical distortions induced by bidentate coordination of uranyl ion by chromate include the following particular effects: (a) the $\mathrm{U}-\mathrm{O}_{\mathrm{bb}}$ bonds are essentially longer (2.446-2.449 \AA in $\mathbf{1}$ and $2.408-2.439 \AA$ in $\mathbf{2}$) than the average

Table 2
Atomic coordinates and displacement parameters $\left(\AA^{2}\right)$ for $\mathbf{1}$.

Atom	x	y	z	$U_{\text {eq }}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	
$\mathrm{U}(1)$	$0.46072(3)$	$0.57422(2)$	$0.19002(1)$	$0.01701(7)$	$0.0202(1)$	$0.0170(1)$	$0.0140(1)$	$-0.00352(7)$	$-0.00615(7)$	$-0.00178(7)$
$\mathrm{Cr}(1)$	$0.27004(12)$	$0.7367(1)$	$0.54166(9)$	$0.0227(1)$	$0.0288(5)$	$0.0195(4)$	$0.0163(4)$	$-0.0039(3)$	$-0.0081(3)$	$0.0034(4)$
$\mathrm{Cr}(2)$	$0.75688(12)$	$0.1792(1)$	$0.03551(9)$	$0.0239(1)$	$0.0259(5)$	$0.0206(4)$	$0.0240(5)$	$-0.0060(3)$	$-0.0128(4)$	$0.0061(4)$
$\mathrm{Cs}(1)$	$0.23951(5)$	$0.12992(4)$	$0.22698(4)$	$0.03117(10)$	$0.0353(2)$	$0.0268(1)$	$0.0312(2)$	$-0.0056(1)$	$-0.0065(1)$	$-0.0088(1)$
$\mathrm{Cs}(2)$	$0.15631(5)$	$0.27676(5)$	$0.66260(4)$	$0.03685(11)$	$0.0341(2)$	$0.0348(2)$	$0.0449(2)$	$-0.0040(1)$	$-0.0193(1)$	$-0.0053(1)$
$\mathrm{O}(1)$	$0.5973(5)$	$0.3616(4)$	$0.0519(4)$	$0.0281(9)$	$0.035(2)$	$0.0231(19)$	$0.024(2)$	$-0.010(1)$	$-0.015(1)$	
$\mathrm{O}(2)$	$0.6516(5)$	$0.6708(5)$	$0.1001(4)$	$0.0338(9)$	$0.031(2)$	$0.045(3)$	$0.030(2)$	$-0.009(1)$	$-0.002(1)$	$-0.017(1)$
$\mathrm{O}(3)$	$0.2296(5)$	$0.8228(5)$	$0.1376(4)$	$0.0312(9)$	$0.039(2)$	$0.029(2)$	$0.025(2)$	$-0.014(1)$	$-0.012(1)$	
$\mathrm{O}(4)$	$0.4022(6)$	$0.7286(5)$	$0.3695(4)$	$0.0320(9)$	$0.044(3)$	$0.036(2)$	$0.020(2)$	$-0.010(1)$	$-0.005(1)$	$-0.005(1)$
$\mathrm{O}(5)$	$0.2661(5)$	$0.4787(5)$	$0.2793(4)$	$0.0354(10)$	$0.034(2)$	$0.030(2)$	$0.041(2)$	$-0.010(1)$	$0.001(1)$	$-0.016(1)$
$\mathrm{O}(6)$	$0.9500(6)$	$0.1848(6)$	$0.0539(5)$	$0.0523(13)$	$0.031(3)$	$0.066(3)$	$0.070(3)$	$-0.032(3)$	$-0.027(2)$	
$\mathrm{O}(7)$	$0.6749(7)$	$0.0264(6)$	$0.1467(5)$	$0.0524(13)$	$0.055(3)$	$0.033(3)$	$0.055(3)$	$0.002(2)$	$-0.008(2)$	
$\mathrm{O}(8)$	$0.0849(6)$	$0.6705(7)$	$0.5651(6)$	$0.0595(14)$	$0.032(3)$	$0.076(4)$	$0.073(4)$	$-0.035(3)$	$-0.008(2)$	$0.002(2)$
$\mathrm{O}(9)$	$0.2097(7)$	$0.9235(5)$	$0.5645(5)$	$0.0503(13)$	$0.080(4)$	$0.027(2)$	$0.037(3)$	$-0.0138(19)$	$-0.013(2)$	$0.017(3)$
$\mathrm{O}(10)$	$0.6170(7)$	$0.3858(6)$	$0.3387(5)$	$0.0669(18)$	$0.092(4)$	$0.064(4)$	$0.032(3)$	$-0.018(2)$	$-0.041(3)$	$0.042(3)$

Table 3
Atomic coordinates and displacement parameters $\left(\AA^{2}\right)$ for 2.

Atom	x	y	z	$U_{\text {eq }}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{U}(1)$	0.82666(3)	0.10352(2)	0.42149(2)	0.01710(8)	0.0217(1)	0.0161(1)	0.0158(1)	0.0058(1)	0.0072(1)	0.00704(9)
$\mathrm{U}(2)$	0.60806(3)	0.34896(2)	$0.05462(2)$	0.01648(8)	0.0203(1)	0.0172(1)	0.0174(1)	0.00867(11)	0.01029(10)	0.00689(9)
$\mathrm{Rb}(1)$	0.05921(9)	0.49790(8)	$0.33328(6)$	0.03412(18)	0.0339(4)	0.0363(5)	0.0310(5)	0.0074(3)	0.0107(3)	0.0010(3)
$\mathrm{Rb}(2)$	0.62847(9)	-0.2368(1)	0.50885(7)	0.03407(19)	0.0288(3)	0.0468(5)	0.0370(5)	0.0216(4)	0.0174(3)	0.0079(3)
$\mathrm{Rb}(3)$	0.94788(9)	0.69142(8)	0.02597(7)	0.03469(19)	0.0311(4)	0.0314(4)	0.0470(5)	0.0107(4)	0.0182(3)	0.0125(3)
$\mathrm{Rb}(4)$	0.37327(11)	0.04093(8)	0.14425(7)	0.0383(2)	0.0586(5)	0.0248(4)	0.0303(5)	0.0040(3)	0.0174(4)	-0.0041(3)
$\mathrm{Cr}(1)$	0.88489(15)	0.1016(1)	0.15670(9)	0.0223(2)	0.0326(6)	0.0180(6)	0.0203(6)	0.0072(5)	0.0113(5)	0.0095(5)
$\mathrm{Cr}(2)$	0.60614(14)	0.3832(1)	0.34371(9)	0.0188(2)	0.0252(5)	0.0195(6)	0.0175(6)	0.0088(5)	0.0112(5)	0.0086(4)
$\mathrm{Cr}(3)$	0.60809(15)	0.3632(1)	-0.1731(1)	0.0217(2)	0.0344(6)	0.0205(6)	0.0159(6)	0.0072(5)	0.0129(5)	0.0119(5)
$\mathrm{Cr}(4)$	0.87566(16)	0.1447(1)	0.6646(1)	0.0286(3)	0.0409(7)	0.0355(7)	0.0182(7)	0.0098(6)	0.0156(5)	0.0247(6)
$\mathrm{O}(1)$	0.7542(6)	0.2159(5)	0.5758(4)	$0.0274(11)$	0.040(3)	0.030(3)	0.020(3)	0.008(2)	0.016(2)	0.022(2)
$\mathrm{O}(2)$	0.6568(7)	0.2441(5)	-0.1081(4)	0.0283(12)	0.049(3)	0.020(3)	0.021(3)	0.006(2)	0.015(2)	0.017(2)
$\mathrm{O}(3)$	0.6090(6)	0.2284(5)	0.3625(4)	0.0252(11)	0.026(2)	0.026(3)	0.030(3)	0.015(2)	0.010(2)	0.011(2)
$\mathrm{O}(4)$	0.8234(6)	0.4446(5)	0.0934(4)	0.0297(12)	0.024(2)	0.030(3)	0.028(3)	0.003(2)	0.003(2)	-0.001(2)
O(5)	0.5238(7)	0.4610(5)	-0.0870(4)	0.0287(12)	0.046(3)	0.034(3)	0.022(3)	0.015(2)	0.023(2)	0.026(2)
O(6)	0.7220(7)	0.1577(5)	0.0745(4)	0.0356(13)	0.059(4)	0.028(3)	0.021(3)	0.007(2)	0.012(3)	0.019(3)
$\mathrm{O}(7)$	0.9967(6)	0.2413(5)	0.4508(4)	0.0291(12)	0.026(2)	0.025(3)	0.035(3)	0.006(2)	0.010(2)	0.000(2)
$\mathrm{O}(8)$	0.8063(7)	0.0578(5)	0.2478(4)	0.0313(12)	0.043(3)	0.039(3)	0.017(3)	0.010(2)	0.015(2)	0.015(2)
$\mathrm{O}(9)$	0.3961(7)	0.2489(6)	0.0135(5)	0.0407(15)	0.028(3)	0.039(4)	0.057(4)	0.017(3)	0.014(3)	0.001(2)
O(10)	0.9679(7)	0.0450(5)	0.5852(4)	0.0337(13)	0.053(3)	0.039(3)	0.015(3)	0.006(2)	0.013(2)	0.034(3)
$\mathrm{O}(11)$	0.6554(7)	-0.0299(5)	0.3948(4)	0.0331(13)	0.050(3)	0.016(3)	0.031(3)	0.005(2)	0.013(3)	-0.003(2)
$\mathrm{O}(12)$	0.9366(7)	-0.0236(5)	0.0892(5)	0.0357(13)	0.052(3)	0.026(3)	0.040(4)	0.009(3)	0.029(3)	0.017(2)
$\mathrm{O}(13)$	0.4253(7)	0.4275(6)	0.3522(5)	0.0437(16)	0.035(3)	0.044(4)	0.072(5)	0.031(3)	0.031(3)	0.022(3)
$\mathrm{O}(14)$	0.6322(9)	0.3782(6)	0.2263(5)	0.0511(17)	0.103(5)	0.046(4)	0.029(4)	0.022(3)	0.043(4)	0.037(4)
$\mathrm{O}(15)$	0.7664(8)	0.4856(6)	0.4342(5)	0.0482(16)	0.053(4)	0.032(4)	0.043(4)	-0.002(3)	0.002(3)	-0.003(3)
O(16)	0.7851(7)	0.4441(6)	-0.1741(5)	$0.0464(16)$	0.044(3)	0.062(4)	0.059(5)	0.040(4)	0.034(3)	0.022(3)
O(17)	0.4714(9)	0.3105(6)	-0.2872(5)	0.0559(18)	0.091(5)	0.039(4)	0.020(4)	0.001(3)	-0.005(3)	0.005(3)
O(18)	0.0517(8)	0.2158(6)	0.2103(6)	0.0537(18)	0.050(4)	0.040(4)	0.064(5)	0.002(3)	0.020(3)	-0.010(3)
$\mathrm{O}(19)$	0.0171(9)	0.2536(7)	0.7566(5)	0.060(2)	0.080(5)	0.054(4)	0.024(4)	-0.008(3)	-0.008(3)	0.029(4)
$\mathrm{O}(20)$	0.7611(9)	0.0581(8)	0.7109(6)	0.069(2)	0.076(5)	0.102(6)	0.079(6)	0.069(5)	0.057(4)	0.050(4)

Table 4
Selected bond lengths in the structures of $\mathbf{1}$ and $\mathbf{2}$.

	1		2			
$\mathrm{U}(1)-\mathrm{O}(2)$	1.776(4)	$\mathrm{Cr}(1)-\mathrm{O}(9)$	$\mathrm{U}(1)-\mathrm{O}(11)$	1.768(5)	$\mathrm{Cr}(1)-\mathrm{O}(12)$	1.577(5)
$\mathrm{U}(1)-\mathrm{O}(5)$	1.795(4)	$\mathrm{Cr}(1)-\mathrm{O}(8)$	$\mathrm{U}(1)-\mathrm{O}(7)$	1.785(5)	$\mathrm{Cr}(1)-\mathrm{O}(18)$	1.590(6)
$\mathrm{U}(1)-\mathrm{O}(10)$	2.246(4)	$\mathrm{Cr}(1)-\mathrm{O}(10)$	$\mathrm{U}(1)-\mathrm{O}(8)$	2.275(5)	$\mathrm{Cr}(1)-\mathrm{O}(8)$	1.684(5)
$\mathrm{U}(1)-\mathrm{O}(4)$	2.334(4)	$\mathrm{Cr}(1)-\mathrm{O}(4)$	$\mathrm{U}(1)-\mathrm{O}(3)$	2.325(5)	$\mathrm{Cr}(1)-\mathrm{O}(6)$	1.697(5)
$\mathrm{U}(1)-\mathrm{O}(1)$	2.373(4)		$\mathrm{U}(1)-\mathrm{O}(10)$	2.355(5)		
$\mathrm{U}(1)-\mathrm{O}(1)$	2.446(4)	$\mathrm{Cr}(1)-\mathrm{O}(6)$	$\mathrm{U}(1)-\mathrm{O}(1)$	2.428(5)	$\mathrm{Cr}(2)-\mathrm{O}(13)$	1.589(5)
$\mathrm{U}(1)-\mathrm{O}(3)$	2.449(4)		$\mathrm{U}(1)-\mathrm{O}(10)$	2.436(5)		1.610(6)
		$\mathrm{Cr}(1)-\mathrm{O}(3)$			$\mathrm{Cr}(2)-\mathrm{O}(14)$	1.672(6)
		$\mathrm{Cr}(1)-\mathrm{O}(1)$	$\mathrm{U}(2)-\mathrm{O}(9)$	1.790(5)	$\mathrm{Cr}(2)-\mathrm{O}(3)$	1.681(5)
			$\mathrm{U}(2)-\mathrm{O}(4)$	1.797(5)		
			$\mathrm{U}(2)-\mathrm{O}(14)$	2.253(6)	$\mathrm{Cr}(3)-\mathrm{O}(17)$	1.574(6)
			$\mathrm{U}(2)-\mathrm{O}(6)$	2.286(5)	$\mathrm{Cr}(3)-\mathrm{O}(16)$	1.600(5)
			$\mathrm{U}(2)-\mathrm{O}(5)$	2.327(5)	$\mathrm{Cr}(3)-\mathrm{O}(2)$	1.685(5)
			$\mathrm{U}(2)-\mathrm{O}(2)$	$2.408(5)$	$\mathrm{Cr}(3)-\mathrm{O}(5)$	1.709(5)
			$\mathrm{U}(2)-\mathrm{O}(5)$	2.439(5)		
						1.575(7)
					$\mathrm{Cr}(4)-\mathrm{O}(20)$	1.589(6)
					$\mathrm{Cr}(4)-\mathrm{O}(1)$	1.675(5)
					$\mathrm{Cr}(4)-\mathrm{O}(10)$	1.701(5)

'standard' $\mathrm{U}-\mathrm{O}$ bond in a UO_{7} pentagonal bipyramid [33] ($2.37 \AA$); (b) the $\mathrm{O}_{\mathrm{bb}}-\mathrm{U}-\mathrm{O}_{\mathrm{bb}}$ valence angles are smaller (65.2° in $\mathbf{1}$ and $63.0-63.6^{\circ}$ in 2) than the expected 'ideal' value of 72°; (c) the $\mathrm{Cr}-\mathrm{O}_{\mathrm{bb}}$ bond lengths are longer ($1.670-1.726 \AA$ in $\mathbf{1}$ and $1.675-1.709 \AA$ in 2) than the average value of $1.647 \AA$ observed for uranyl chromates [34]; (d) the $\mathrm{O}_{\mathrm{bb}}-\mathrm{Cr}-\mathrm{O}_{\mathrm{bb}}$ bond valence angles shrink (98.1° in 1 and $97.9-98.8^{\circ}$ in $\mathbf{2}$) with respect to the ideal tetrahedron value of 109.5°. For chromate tetrahedra involved in a monodentate bridging, the $\mathrm{Cr}-\mathrm{O}_{\mathrm{mb}}$ bonds (1.661$1.684 \AA$ in $\mathbf{1}$ and $1.672-1.697 \AA$ in $\mathbf{2}$ are essentially longer than the $\mathrm{Cr}-\mathrm{O}_{t}$ bonds ($1.598-1.627 \AA$ in $\mathbf{1}$ and $1.577-1.610 \AA$ in $\mathbf{2}$).

Though topologically similar, uranyl chromate chains in the structures of $\mathbf{1}$ and 2 possess different conformations (Fig. 3), which is most probably the result of different size of the Cs^{+}and Rb^{+}ions. A similar situation has been observed for uranyl molybdate chains in the structures of $A_{2}\left[\left(\mathrm{UO}_{2}\right) \mathrm{O}\left(\mathrm{MoO}_{4}\right)_{2}\right](A=\mathrm{Na}$, $\mathrm{K}, \mathrm{Rb})[35,36]$. Conformation in the uranyl chromate chains observed in $\mathbf{1}$ and $\mathbf{2}$ results from the possibility of CrO_{4} tetrahedra within the chain to rotate around the $\mathrm{O}_{\mathrm{bb}}-\mathrm{O}_{\mathrm{bb}}$ or $\mathrm{O}_{\mathrm{mb}}-\mathrm{O}_{\mathrm{mb}}$ edges, respectively, without changing the overall topology of the chains. Fig. 3(a) and (b) show black-and-white connectivity graphs of the $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}\right]^{2-}$ chains with the $\mathrm{U}-\mathrm{Cr}$ distances written above

Fig. 1. General projections of the crystal structures of $\mathbf{1}$ (a) and $\mathbf{2}$ (b). (Legend: $\mathrm{Cs}, \mathrm{Rb}=$ teal, $\mathrm{UO}_{7}=$ orange, $\mathrm{CrO}_{4}=$ blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. ORTEP representation of the $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{CrO}_{4}\right)_{2}\right]^{2-}$ chains in the crystal structures of $\mathbf{1}(\mathrm{a})$ and $\mathbf{2}(\mathrm{b})$. Ellipsoids are drawn at 50% probability.
a

b

Fig. 3. Conformation of uranyl chromate chains in the structures of $\mathbf{1}$ and $\mathbf{2}$: polyhedral representation of the chains (1(a), 2(b)) and their description using graphs. The $\mathrm{U}-\mathrm{Cr}$ distances are written near the corresponding interpolyhedral links. See text for details.
the edges linking adjacent U (black) and Cr (white) vertices. Note that single and bold edges correspond to mono- and bidentate linkage modes, respectively. The \mathbf{u} and \mathbf{d} symbols near the white vertices with monodentate linkages only indicate orientation of the chromate tetrahedra relative to the plane of the chain. Thus the conformation types of uranyl chromate chains in $\mathbf{1}$ and $\mathbf{2}$ can be described as $(\mathbf{u})(\mathbf{d})$ and as (ud)(ud), respectively. The chain conformation in $\mathbf{2}$ is more complex than that in 1, which results in the observed doubling of the number of symmetrically independent atoms in the structure. It is of interest that the chains topologically identical to those observed in 1 and 2 have been reported in the structure of $\mathrm{Cs}_{3}\left[\mathrm{NpO}_{2}\left(\mathrm{SO}_{4}\right)_{2}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ [37].

In conclusion, we reported on the syntheses and structures of two first uranyl chromates containing chains with bidentate coordination mode of uranyl cations by CrO_{4} tetrahedra.

Acknowledgment

This work was supported by St. Petersburg State University through the internal grant 3.37.84.2011 and the X-Ray Diffraction Resource Center.

References

[1] P.C. Burns, Rev. Mineral. 38 (1999) 23-90.
[2] P.C. Burns, Can. Mineral. 43 (2005) 1839-1894.
[3] S.V. Krivovichev, P.C. Burns, I.G. Tananaev (Eds.), Elsevier, Amsterdam, 2007.
[4] T.H. Muster, A.E. Hughes, S.A. Furman, T. Harvey, N. Sherman, S. Hardin, P. Corrigan, D. Lau, F.H. Scholes, P.A. White, M. Glenn, J. Mardel, S.J. Garcia, J.M. Mol, Electrochim. Acta 54 (2009) 3402-3411.
[5] S.S.J. Mahmoud, Chem. Phys. P.C.B 92 (1995) 162-172.
[6] A.J. Locock, S. Skanthakumar, P.C. Burns, L. Soderholm, Chem. Mater. 16 (2004) 1384-1390.
[7] V.N. Serezhkin, V.K. Trunov, Kristallografiya 26 (1981) 301-304.
8] V.N. Serezhkin, N.V. Boiko, V.K. Trunov, Zh. Strukt. Khim. 23 (1982) 121-124
[9] L.B. Serezhkina, V.K. Trunov, L.N. Kholodkovskaya, N.V. Kuchumova, Koord. Khim. 16 (1990) 1288-1291.
[10] S.V. Krivovichev, P.C. Burns, Z. Kristallogr. 218 (2003) 725-732.
[11] S.V. Krivovichev, P.C. Burns, Z. Kristallogr. 218 (2003) 683-690.
[12] S.V. Krivovichev, P.C. Burns, Z. Kristallogr. 218 (2003) 568-574.
[13] S.V. Krivovichev, P.C. Burns, Radiokhimiya 46 (2004) 408-411.
[14] R.E. Sykora, S.M. McDaniel, T.E.Albrecht Schmitt, J. Solid State Chem. 177 (2004) 1431-1436.
[15] A.G. Verevkin, A.V. Vologzhanina, L.B. Serezhkina, V.N. Serezhkin, Crystallogr. Rep. 55 (2010) 602-608.
[16] R.E. Sykora, D.M. Wells, T.E.Albrecht Schmitt, Inorg. Chem. 41 (2002) 2304-2306.
[17] R.E. Sykora, S.M. McDaniel, D.M. Wells, T.E.Albrecht Schmitt, Inorg. Chem. 41 (2002) 5126-5132.
[18] S.V. Krivovichev, P.C. Burns, Z. Anorg. Allg. Chem. 629 (2003) 1965-1968.
[19] S.V. Krivovichev, A.J. Locock, P.C. Burns, Z. Kristallogr. 220 (2005) 10-18.
[20] S.V. Krivovichev, Eur. J. Inorg. Chem. 18 (2010) 2594-2603.
[21] Yu.N. Mikhailov, L.A. Kokh, V.G. Kuznetsov, T.G. Grevtseva, S.K. Sokol, G.V. Ellert, Koord. Khim. 3 (1977) 508-513.
[22] P.C. Burns, L.A. Hayden, Acta Crystallogr. C58 (2002) i121-i123.
[23] L.A. Hayden, P.C. Burns, Can. Mineral 40 (2002) 211-216.
[24] L.A. Hayden, P.C. Burns, J. Solid State Chem. 163 (2002) 313-318.
[25] M.B. Doran, A.J. Norquist, D. O'Hare, Acta Crystallogr. E59 (2003) m765-m767.
[26] M.B. Doran, A.J. Norquist, D. O’Hare, Acta Crystallogr. E59 (2003) m762-m764.
[27] A.J. Norquist, M.B. Doran, D. O'Hare, Inorg. Chem. 44 (2005) 3837-3843.
[28] A.J. Norquist, M.B. Doran, D. O’Hare, Acta Crystallogr. E61 (2005) m807-m810.
[29] C. Hennig, K. Schmeide, V. Brendler, H. Moll, S. Tsushima, A.C. Scheinost, Inorg. Chem. 46 (2007) 5882-5892.
[30] T. Vercouter, P. Vitorge, B. Amekraz, C. Moulin, Inorg. Chem. 47 (2008) 2180-2189.
[31] C. Hennig, W. Kraus, F. Emmerling, A. Ikeda, A.C. Scheinost, Inorg. Chem. 47 (2008) 1634-1638.
[32] O.I. Siidra, E.V. Nazarchuk, S.V. Krivovichev, Eur. J. Inorg. Chem. 2012 (2012) 194-197.
[33] P.C. Burns, R.C. Ewing, F.C. Hawthorne, Can. Mineral. 35 (1997) 1551-1570.
[34] S.V. Krivovichev, Radiochemistry 46 (2004) 434-437.
[35] S.V. Krivovichev, P.C. Burns, Can. Mineral. 39 (2001) 197-206.
[36] S.V. Krivovichev, P.C. Burns, J. Solid State Chem. 168 (2002) 245-258.
[37] M.S. Grigor’ev, A.I. Yanovskii, A.M. Fedoseev, N.A. Budantseva, Yu.T. Struchkov, N.N. Krot, Radiokhimiya 33 (1991) 17.

[^0]: ＊Corresponding author．Fax：+78123289775 ．
 E－mail address：siidra＠mail．ru（O．I．Siidra）．

